702 research outputs found

    Chimpanzee coordination and potential communication in a two-touchscreen turn-taking game

    No full text
    Recent years have seen a growing interest in the question of whether and how groups of nonhuman primates coordinate their behaviors for mutual benefit. On the one hand, it has been shown that chimpanzees in the wild and in captivity can solve various coordination problems. On the other hand, evidence of communication in the context of coordination problems is scarce. Here, we investigated how pairs of chimpanzees (Pan troglodytes) solved a problem of dynamically coordinating their actions for achieving a joint goal. We presented five pairs of chimpanzees with a turn-taking coordination game, where the task was to send a virtual target from one computer display to another using two touch-screens. During the joint practice of the game some subjects exhibited spontaneous gesturing. To address the question whether these gestures were produced to sustain coordination, we introduced a joint test condition in which we simulated a coordination break-down scenario: subjects appeared either unwilling or unable to return the target to their partner. The frequency of gesturing was significantly higher in these test trials than in the regular trials. Our results suggest that at least in some contexts chimpanzees can exhibit communicative behaviors to sustain coordination in joint action

    ā€˜Mining the materialsā€™: A framework for student-led self-study task creation

    Get PDF
    Meaningful independent learning is rightly viewed as a central component of successful study in L2. Given that the considerable majority of learnersā€™ time is spent outside the classroom, the self-study space has become a source of great intrigue for English language teachers (Benson and Reinders, 2011). However, precisely because self-directed learning lies beyond the typical boundaries of the teacherā€™s gaze, it is influenced by a variety of factors, not least learnersā€™ familiarity with effective independent learning practices. This summary article traces and evaluates the implementation of a framework for student-led self-study task creation with a group of 14 foundation pre-sessional students making the transition from secondary to tertiary study at the University of Glasgow with little or no existing concept of effective self-study practices. The trial aimed to provide a space for students to evaluate their strengths and weaknesses in English and establish independent learning priorities, as well as a more critical awareness (ā€˜miningā€™) of regular classroom tasks as potential models for independent learning activities. Obtaining feedback at regular intervals, coupled with data from weekly reflection cycles, the investigation tracked developments in self-study practices while highlighting obstacles to enhanced independent learning. The trial also presented plentiful opportunities to reflect on the definition of effectiveness with regard to independent learning

    How animals collaborate : underlying proximate mechanisms

    Get PDF
    Funding: Templeton World Charity Foundation (Grant Number(s): TWCF0264).Collaboration or social interactions in which two or more individuals coordinate their behavior to produce outcomes from which both individuals benefit are common in nature. Individuals from many species hunt together, defend their territory, and form coalitions in intragroup competition. However, we still know very little about the proximate mechanisms underlying these behaviors. Recent theories of human cognitive evolution have emphasized the role collaboration may have played in the selection of socioā€cognitive skills. It has been argued that the capacity to form shared goals and joint intentions with others, is what allows humans to collaborate so flexibly and efficiently. Although there is no evidence that nonhuman animals are capable of shared intentionality, there is conceivably a wide range of proximate mechanisms that support forms of, potentially flexible, collaboration in other species. We review the experimental literature with the aim of evaluating what we know about how other species achieve collaboration; with a particular focus on chimpanzees. We structure the review with a new categorization of collaborative behavior that focuses on whether individuals intentionally coordinate actions with others. We conclude that for a wider comparative perspective we need more data from other species but the findings so far suggest that chimpanzees, and possibly other great apes, are capable of understanding the causal role of a partner in collaboration.Publisher PDFPeer reviewe

    Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code

    Get PDF
    Cellular signalling cascades regulate the activity of transcription factors that convert extracellular information into gene regulation. C/EBPbeta is a ras/MAPkinase signal-sensitive transcription factor that regulates genes involved in metabolism, proliferation, differentiation, immunity, senescence, and tumourigenesis. The protein arginine methyltransferase 4 PRMT4/CARM1 interacts with C/EBPbeta and dimethylates a conserved arginine residue (R3) in the C/EBPbeta N-terminal transactivation domain, as identified by mass spectrometry of cell-derived C/EBPbeta. Phosphorylation of the C/EBPbeta regulatory domain by ras/MAPkinase signalling abrogates the interaction between C/EBPbeta and PRMT4/CARM1. Differential proteomic screening, protein interaction studies, and mutational analysis revealed that methylation of R3 constraines interaction with SWI/SNF and Mediator complexes. Mutation of the R3 methylation site alters endogenous myeloid gene expression and adipogenic differentiation. Thus, phosphorylation of the transcription factor C/EBPbeta couples ras signalling to arginine methylation and regulates the interaction of C/EBPbeta with epigenetic gene regulatory protein complexes during cell differentiation

    A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex

    Get PDF
    We describe a quantitative theory to account for the computations performed by the feedforward path of the ventral stream of visual cortex and the local circuits implementing them. We show that a model instantiating the theory is capable of performing recognition on datasets of complex images at the level of human observers in rapid categorization tasks. We also show that the theory is consistent with (and in some case has predicted) several properties of neurons in V1, V4, IT and PFC. The theory seems sufficiently comprehensive, detailed and satisfactory to represent an interesting challenge for physiologists and modelers: either disprove its basic features or propose alternative theories of equivalent scope. The theory suggests a number of open questions for visual physiology and psychophysics

    Interacting mindreaders

    Get PDF
    Could interacting mindreaders be in a position to know things which they would be unable to know if they were manifestly passive observers? This paper argues that they could. Mindreading is sometimes reciprocal: the mindreader's target reciprocates by taking the mindreader as a target for mindreading. The paper explains how such reciprocity can significantly narrow the range of possible interpretations of behaviour where mindreaders are, or appear to be, in a position to interact. A consequence is that revisions and extensions are needed to standard theories of the evidential basis of mindreading. The view also has consequences for understanding how abilities to interact combined with comparatively simple forms of mindreading may explain the emergence, in evolution or development, of sophisticated forms of social cognition
    • ā€¦
    corecore